Investigating thermal properties of gas-filled planetary regoliths using a thermal probe
نویسندگان
چکیده
We introduce a general purpose penetrator, fitted with a heater, for measuring temperature and thermal diffusivity. Due to its simplicity of deployment and operation the penetrator is well suited for remote deployment by spacecraft into a planetary regolith. Thermal measurements in planetary regoliths are required to determine the surface energy balance and to measure their thermal properties. If the regolith is on a planet with an atmosphere a good understanding of the role of convection is required to properly interpret the measurements. This could also help to identify the significant heat and mass exchange mechanisms between the regolith and the atmosphere. To understand the role of convection in our regolith analogues we use a network of temperature sensors placed in the target. In practical applications a penetrator will push material out of the way as it enters a target possible changing its thermal properties. To investigate this effect a custom built test rig, that precisely controls and monitors the motion of the penetrator, is used. The thermal diffusivity of limestone powder and sand is derived by fitting a numerical thermal model to the temperature measurements. Convection seems to play an important role in the transfer of heat in this case. Firstly a diffusion-convection model fits the laboratory data better than a diffusivity-only model. Also the diffusivity derived from a diffusivity-convection model was found to be in good agreement with diffusivity derived using other methods published in the literature. Thermal diffusivity measurements, inspection of the horizontal temperature profiles and visual observations suggests that limestone powder is compacted more readily than sand during entry of the penetrator into the target. For both regolith analogues the disturbance of material around the penetrator was determined to have an insignificant effect on the diffusivity measurements in this case.
منابع مشابه
Sonication Effects on Stability and Thermal Properties of Silica- Paraflu Based Nanofluids
Cooling is one of the most important challenges in industries, especially in the automotive industry. The coolant which is used in engine radiators possesses lower thermal conductivity. To enhance the thermal properties, coolant was dispersed in nano-sized particles and the fluid is called as Nanofluid. In this Study, Silica Nanoparticle was dispersed in Paraflu Engine coolant usin...
متن کاملSynthesis of CuO Nanoparticles and Study on their Catalytic Properties
In this research, CuO spherical-like nanoparticles were synthesized using the planetary ball mill method. The structure, particle size and morphology of the resulting CuO nanoparticles were characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy) and SAXS (small-angle X-ray scattering) methods. The results of this investigation showed ...
متن کاملAn Improvement in Thermal and Rheological Properties of Water-based Drilling Fluids Using Multiwall Carbon Nanotube (MWCNT)
Designing drilling fluids for drilling in deep gas reservoirs and geothermal wells is a major challenge. Cooling drilling fluids and preparing stable mud with high thermal conductivity are of great concern. Drilling nanofluids, i.e. a low fraction of carbon nanotube (CNT) well dispersed in mud, may enhance the mixture thermal conductivity compared to the base fluids. Thus, they are potentially ...
متن کاملInvestigating the Effect of Joint Geometry of the Gas Tungsten Arc Welding Process on the Residual Stress and Distortion using the Finite Element Method
Although a few models have been proposed for 3D simulation of different welding processes, 2D models are still more effective in design goals, thus more popular due to the short-time analysis. In this research, replacing "time" by the "third dimension of place", the gas tungsten arc welding process was simulated by the finite element method in two dimensions and in a short time with acceptable ...
متن کاملInvestigating the effects of chemical modification of clay nanoparticles on thermal degradation and mechanical properties of TPU/nanoclay composites
Thermoplastic polyurethane (TPU)/clay nanocomposites were prepared via a melt-compounding method using ester type TPU and two different modified organoclays (Cloisite 30B and Cloisite 15A) in different contents. The Effects of the chemical structure and content of the nanoclays on the thermal degradation and mechanical properties of TPU were also investigated. The effect of structural modificat...
متن کامل